Public

e PeckShield

SMART CONTRACT AUDIT REPORT

for

AIRDROP Token

Prepared By: Xiaomi Huang

PeckShield
September 9, 2024

1/18 PeckShield Audit Report #: 2024-226

contact@peckshield.com

Public

Document Properties

Client
Title
Target

Version
Author
Auditors

Reviewed by

AIRDROP Token

Smart Contract Audit Report

AIRDROP

1.0

Xuxian Jiang

Daisy Cao, Xuxian Jiang

Xiaomi Huang

AVSI oA Xuxian Jiang

Classification B

Version Info

Version
1.0

Date
September 9, 2024

Author
Xuxian Jiang

Description
Final Release

1.0-rc

September 4, 2024

Xuxian Jiang

Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Xiaomi Huang

+86 183 5897 7782

contact@peckshield.com

2/18

PeckShield Audit Report #: 2024-226

Public

Contents
1 Introduction 4
1.1 About AIRDROP e 4
1.2 About PeckShield 6
1.3 Methodology 6
1.4 Disclaimer 8
2 Findings 9
2.1 Summary . ..o 9
22 Key Findings 10
3 ERC20 Compliance Checks 11
4 Detailed Results 14
4.1 Improved signaturesRequired Validation in MetaMultiSigWallet 14
4.2 Trust Issue of Admin Keys 15
5 Conclusion 17
References 18

3/18

PeckShield Audit Report #: 2024-226

Public

1 Introduction

Given the opportunity to review the design document and related source code of the AIRDROP token,

we outline in the report our systematic method to evaluate potential security issues in the smart

contract implementation, expose possible semantic inconsistency between smart contract code and

the documentation, and provide additional suggestions or recommendations for improvement. Our

results show that the given version of the smart contract exhibits no Erc20 compliance issues or

security concerns. This document outlines our audit results.

1.1 About AIRDROP

Airdrop2049 is a fair airdrop and pre-market trading platform within the Telegram ecosystem, aiming

to be the first station of web3 mass adoption for real human beings. This audit covers the related

token contract AIRDROP, which is an ERc20-compliant token with extra features such as voting. This

specific audit focuses on its ERc20-compliance and security. The basic information of the audited

contract is as follows:

Table 1.1: Basic Information of a1rDROP Token Contract

Item Description |
Name | AIRDROP Token
Type | Ethereum ERC20 Token Contract
Platform | Solidity
Audit Method | Whitebox

Audit Completion Date

September 9, 2024

In the following, we show the deployment address of the token contract being audited.

e https://arbiscan.io/address/0xC0ac4bbaA856362A167D808cA326Ce413c126083

And here is the new deployment address after all fixes for the issues found in the audit have been

checked in.

4/18

PeckShield Audit Report #: 2024-226

Public

e https://arbiscan.io/address/0xdc5f1bf636dcadae7e285a484dc71alfbadeelal (bfb1562)

5/18 PeckShield Audit Report #: 2024-226

Public

1.2 About PeckShield

PeckShield Inc. [6] is a leading blockchain security company with the goal of elevating the security,
privacy, and usability of current blockchain ecosystem by offering top-notch, industry-leading ser-
vices and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [5]:

e Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

e Impact measures the technical loss and business damage of a successful attack;
e Severity demonstrates the overall criticality of the risk;

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

Table 1.2: Vulnerability Severity Classification

High Medium
3]
e Medium Medium
E

Low Medium

High Medium Low
Likelihood

We perform the audit according to the following procedures:

e Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static

code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

6/18 PeckShield Audit Report #: 2024-226

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

e ERC20 Compliance Checks: We then manually check whether the implementation logic of the

audited smart contract(s) follows the standard ERC20 specification and other best practices.

e Additional Recommendations: We also provide additional suggestions regarding the coding and

development of smart contracts from the perspective of proven programming practices.

Table 1.3: The Full List of Check Items

Category | Check ltem
Constructor Mismatch
Ownership Takeover
Redundant Fallback Function
Overflows & Underflows
Reentrancy
Money-Giving Bug
Blackhole
Unauthorized Self-Destruct
Revert DoS
Unchecked External Call
Gasless Send
Send Instead of Transfer
Costly Loop
(Unsafe) Use of Untrusted Libraries
(Unsafe) Use of Predictable Variables
Transaction Ordering Dependence
Deprecated Uses
Approve / TransferFrom Race Condition
ERC20 Compliance Checks Compliance Checks (Section 3)
Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Additional Recommendations Making Visibility Level Explicit
Making Type Inference Explicit
Adhering To Function Declaration Strictly
Following Other Best Practices

Basic Coding Bugs

To evaluate the risk, we go through a list of check items and each would be labeled with a severity
category. For one check item, if our tool does not identify any issue, the contract is considered safe
regarding the check item. For any discovered issue, we might further deploy contracts on our private
testnet and run tests to confirm the findings. If necessary, we would additionally build a PoC to

demonstrate the possibility of exploitation. The concrete list of check items is shown in Table 1.3.

7/18 PeckShield Audit Report #: 2024-226

Public

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit

should not be used as investment advice.

8/18 PeckShield Audit Report #: 2024-226

Public

2 Findings

2.1 Summary

Here is a summary of our findings after analyzing the ATRDROP token contract and its related presale
contract. During the first phase of our audit, we study the smart contract source code and run our
in-house static code analyzer through the codebase. The purpose here is to statically identify known
coding bugs, and then manually verify (reject or confirm) issues reported by our tool. We further
manually review business logics, examine system operations, and place Erc20-related aspects under

scrutiny to uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical

0

High 0
Medium 0
2

0

2

Low

Informational

Total

Moreover, we explicitly evaluate whether the given contracts follow the standard ErRc20 specifi-
cation and other known best practices, and validate its compatibility with other similar ErRc20 tokens
and current DeFi protocols. The detailed Erc20 compliance checks are reported in Section 3. After
that, we examine a few identified issues of varying severities that need to be brought up and paid
more attention to. (The findings are categorized in the above table.) Additional information can be

found in the next subsection, and the detailed discussions are in Section 4.

9/18 PeckShield Audit Report #: 2024-226

Public

2.2 Key Findings

Overall, no ERc20 compliance issue was found and our detailed checklist can be found in Section 3.
While there is no critical or high severity issue, the implementation can be improved by resolving the

identified issues (shown in Table 2.1), including 2 low-severity vulnerabilities.

Table 2.1: Key AIRDROP Audit Findings

ID Severity Title - Category Status |
PVE-001 Low Improved _signaturesRequired Valida- | Business Logic Resolved
tion in MetaMultiSigWallet
PVE-002 Low Trust Issue Of Admin Keys Security Features | Confirmed

Besides recommending specific countermeasures to mitigate the above issue(s), we also emphasize
that it is always important to develop necessary risk-control mechanisms and make contingency plans,
which may need to be exercised before the mainnet deployment. The risk-control mechanisms need
to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to

Section 3 for our detailed compliance checks and Section 4 for elaboration of reported issues.

10/18 PeckShield Audit Report #: 2024-226

Public

3 ERC20 Compliance Checks

The ERC20 specification defines a list of API functions (and relevant events) that each token contract
is expected to implement (and emit). The failure to meet these requirements means the token
contract cannot be considered to be ERc20 -compliant. Naturally, as the first step of our audit,
we examine the list of API functions defined by the Erc20 specification and validate whether there
exist any inconsistency or incompatibility in the implementation or the inherent business logic of the
audited contract(s).

Table 3.1: Basic View-0nly Functions Defined in The ErRc20 Specification

Item Description ~ Status
name() Is declared as a public view function v
Returns a string, for example “Tether USD" v
symbol() Is declared as a public view function v
Returns the symbol by which the token contract should be known, for v
example “USDT". It is usually 3 or 4 characters in length
decimals() Is declared as a public view function v
Returns decimals, which refers to how divisible a token can be, from 0 v
(not at all divisible) to 18 (pretty much continuous) and even higher if
required
totalSupply() Is declared as a public view function v
Returns the number of total supplied tokens, including the total minted v
tokens (minus the total burned tokens) ever since the deployment
Is declared as a public view function v
balanceOf{() Anyone can query any address’ balance, as all data on the blockchain is v
public
allowance() Is declared as a public view function v
Returns the amount which the spender is still allowed to withdraw from v
the owner

11/18 PeckShield Audit Report #: 2024-226

Public

Our analysis shows that there is no ERC20 inconsistency or incompatibility issue found in the

audited AIRDROP token contract. In the surrounding two tables, we outline the respective

list of

basic view-only functions (Table 3.1) and key state-changing functions (Table 3.2) according to the

widely-adopted ERc20 specification.

Table 3.2: Key state-Changing Functions Defined in The ERC20 Specification

Item

transfer()

~ Description
Is declared as a public function

~ Status

Returns a boolean value which accurately reflects the token transfer status

Reverts if the caller does not have enough tokens to spend

Allows zero amount transfers

Emits Transfer() event when tokens are transferred successfully (include 0
amount transfers)

NN NS

Reverts while transferring to zero address

transferFrom()

Is declared as a public function

Returns a boolean value which accurately reflects the token transfer status

Reverts if the spender does not have enough token allowances to spend

Updates the spender’s token allowances when tokens are transferred suc-
cessfully

NN NN S

Reverts if the from address does not have enough tokens to spend

Allows zero amount transfers

Emits Transfer() event when tokens are transferred successfully (include 0
amount transfers)

NSNS

Reverts while transferring from zero address

Reverts while transferring to zero address

approve()

Is declared as a public function

Returns a boolean value which accurately reflects the token approval status

Emits Approval() event when tokens are approved successfully

Reverts while approving to zero address

Transfer() event

Is emitted when tokens are transferred, including zero value transfers

Is emitted with the from address set to address(0x0) when new tokens
are generated

NN N NN NS

Approval() event

Is emitted on any successful call to approve()

\

In addition, we perform a further examination on certain features that are permitted by the Erc20

specification or even further extended in follow-up refinements and enhancements, but not required

for implementation. These features are generally helpful, but may also impact or bring

certain

incompatibility with current peFi protocols. Therefore, we consider it is important to highlight them

as well. This list is shown in Table 3.3.

12/18

PeckShield Audit Report #: 20

24-226

Public

Table 3.3: Additional opt-in Features Examined in Our Audit

Feature Description - Opt-in |
Deflationary | Part of the tokens are burned or transferred as fee while on trans- —
fer()/transferFrom() calls
Rebasing The balanceOf() function returns a re-based balance instead of the actual —
stored amount of tokens owned by the specific address
Pausable The token contract allows the owner or privileged users to pause the token —
transfers and other operations
Upgradable | The token contract allows for future upgrades —
Whitelistable | The token contract allows the owner or privileged users to whitelist a —
specific address such that only token transfers and other operations related
to that address are allowed
Mintable The token contract allows the owner or privileged users to mint tokens to v
a specific address
Burnable The token contract allows the owner or privileged users to burn tokens of —
a specific address

13/18

PeckShield Audit Report #: 2024-226

27
28
29
30
31
32
33
34
35
36

Public

4 Detailed Results

4.1 Improved _signaturesRequired Validation in

MetaMultiSigWallet
e |D: PVE-001 e Target: MetaMultiSigWallet
e Severity: Low e Category: Business Logic [4]
o Likelihood: Low e CWE subcategory: CWE-770 [2]
e Impact: Low
Description

To facilitate possible management of the admin roles, the ATRDROP token contract has an accompa-
nying MetaMultiSigWallet contract. It basically supports M-of-N multisig with M being the required
number of signatures or keys and w being the total number of signatures or keys involved in the
transaction. By design, there is an implicit requirement of M <= n. While examining the enforcement
of this requirement, we notice the MetaMultiSigWallet contract may be improved to honor this implicit
requirement.

In the following, we show the implementation of the related constructor routine. It has a rather
straightforward logic in simply initializing the provided accounts of multiple owners as well as the
intended ¥, i.e., signaturesRequired. With that, it will be helpful to enforce the following requirement,
i.e., signaturesRequired <= _owner.length.

constructor (uint256 _chainId, address[] memory _owners, uint _signaturesRequired) {

require (_signaturesRequired > 0, "constructor: must be non-zero sigs required");
signaturesRequired = _signaturesRequired;
for (uint i = 0; i < _owners.length; i++) {

address owner = _ownersl[i];

require (owner != address(0), "constructor: zero address");

require (!isOwner [owner], "constructor: owner not unique");

isOwner [owner] = true;

emit Owner (owner, isOwner [owner]);

14/18 PeckShield Audit Report #: 2024-226

37
38

21
22
23
24
25
26
27
28
29
30

Public

chainId = _chainId;
LiSth1g 4.1: MetaMultiSigWallet::constructor()

Recommendation Improve the above-mentioned routine to honor the implicit requirement.

Note other routines can be similarly improved, including addsigner (), removeSigner (), and updateSignaturesRequired

Status This issue has been resolved as the team confirms it is part of the design.

4.2 Trust Issue of Admin Keys

ID: PVE-002
Severity: Low
Likelihood: Low

Impact: Medium

Target: Multiple Contracts
Category: Security Features [3]
CWE subcategory: CWE-287 [1]

Description

In the AIRDROP contract, there is a privileged account, i.e., manager, that plays a critical role in
governing and regulating the token-wide operations (e.g., assign roles and mint additional tokens).
Our analysis shows that the privileged account needs to be scrutinized. In the following, we examine
the privileged account and the related privileged accesses in current contract.

function mint (address _account, uint256 _amount) public onlyManager {

_mint (_account, _amount);

function _mint(address to, uint256 amount)
internal
override (ERC20, ERC20Votes)

super._mint (to, amount);

Listing 4.2: Example Privileged Operations in a1rprop

We emphasize that the privilege assignment may be necessary and consistent with the token
design. However, it would be worrisome if the privileged account is a plain Eoa account. Note
that a multi-sig account could greatly alleviate this concern, though it is still far from perfect.
Specifically, a better approach is to eliminate the administration key concern by transferring the role
to a community-governed DA0. In the meantime, a timelock-based mechanism can also be considered

as mitigation.

15/18 PeckShield Audit Report #: 2024-226

Public

In the meantime, the token contract makes use of the proxy contract to allow for future upgrades.

The upgrade is a privileged operation, which also falls in this trust issue on the admin key.

Recommendation Promptly transfer the privileged account to the intended pao-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-

tended trustless nature and high-quality distributed governance.

Status This issue has been confirmed.

16/18 PeckShield Audit Report #: 2024-226

Public

5 Conclusion

In this security audit, we have examined the ATRDROP contract design and implementation. During our
audit, we first checked all respects related to the compatibility of the ERc20 specification and other
known Erc20 pitfalls/vulnerabilities and found no issue in these areas. We then proceeded to examine
other areas such as coding practices and business logics. Overall, no issue was found in these areas,
and the current deployment follows the best practice. Meanwhile, as disclaimed in Section 1.4, we
appreciate any constructive feedbacks or suggestions about our findings, procedures, audit scope,

etc.

17/18 PeckShield Audit Report #: 2024-226

Public

References

[1] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[2] MITRE. CWE-770: Allocation of Resources Without Limits or Throttling. https://cwe.mitre.
org/data/definitions/770.html.

[3] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/
254.html.

[4] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[5] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP _Risk Rating

Methodology.

[6] PeckShield. PeckShield Inc. https://www.peckshield.com.

18/18 PeckShield Audit Report #: 2024-226

https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/770.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About AIRDROP
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	ERC20 Compliance Checks
	Detailed Results
	Improved _signaturesRequired Validation in MetaMultiSigWallet
	Trust Issue of Admin Keys

	Conclusion
	References

